514 research outputs found

    Orientation-dependent indentation response of helium-implanted tungsten

    Full text link
    A literature review of studies investigating the topography of nano-indents in ion-implanted materials reveals seemingly inconsistent observations, with report of both pile-up and sink-in. This may be due to the crystallographic orientation of the measured sample point, which is often not considered when evaluating implantation-induced changes in the deformation response. Here we explore the orientation dependence of spherical nano-indentation in pure and helium-implanted tungsten, considering grains with , and out-of-plane orientations. Atomic force microscopy (AFM) of indents in unimplanted tungsten shows little orientation dependence. However, in the implanted material a much larger, more localised pile-up is observed for grains than for and orientations. Based on the observations for grains, we hypothesise that a large initial hardening due to helium-induced defects is followed by localised defect removal and subsequent strain softening. A crystal plasticity finite element model of the indentation process, formulated based on this hypothesis, accurately reproduces the experimentally-observed orientation-dependence of indent morphology. The results suggest that the mechanism governing the interaction of helium-induced defects with glide dislocations is orientation independent. Rather, differences in pile-up morphology are due to the relative orientations of the crystal slip systems, sample surface and spherical indenter. This highlights the importance of accounting for crystallographic orientation when probing the deformation behaviour of ion-implanted materials using nano-indentation

    Hardening and Strain Localisation in Helium-Ion-Implanted Tungsten

    Full text link
    Tungsten is the main candidate material for plasma-facing armour components in future fusion reactors. In-service, fusion neutron irradiation creates lattice defects through collision cascades. Helium, injected from plasma, aggravates damage by increasing defect retention. Both can be mimicked using helium-ion-implantation. In a recent study on 3000 appm helium-implanted tungsten (W-3000He), we hypothesized helium-induced irradiation hardening, followed by softening during deformation. The hypothesis was founded on observations of large increase in hardness, substantial pile-up and slip-step formation around nano-indents and Laue diffraction measurements of localised deformation underlying indents. Here we test this hypothesis by implementing it in a crystal plasticity finite element (CPFE) formulation, simulating nano-indentation in W-3000He at 300 K. The model considers thermally-activated dislocation glide through helium-defect obstacles, whose barrier strength is derived as a function of defect concentration and morphology. Only one fitting parameter is used for the simulated helium-implanted tungsten; defect removal rate. The simulation captures the localised large pile-up remarkably well and predicts confined fields of lattice distortions and geometrically necessary dislocation underlying indents which agree quantitatively with previous Laue measurements. Strain localisation is further confirmed through high resolution electron backscatter diffraction and transmission electron microscopy measurements on cross-section lift-outs from centre of nano-indents in W-3000He

    Design of GPS Information Processing System Based on Single Chip Microcomputer

    Get PDF
    With the rapid development of science and technology in the 21st century, the Global Positioning System (GPS) has become one of the representatives of the development achievements of this era. The system not only has high precision and good performance, but also has a wide range of application. It has been widely used in land, ocean, space and other fields, with a very high market share. In response to a surge in demand for satellite-positioning and navigation applications, In this paper, the GPS information processing system is constructed with hardware modules such as GPS receiving module and LCD module as the main structure, single chip microcomputer as the core controller, supplemented by necessary peripheral circuits. The success of GPS information processing system based on single chip microcomputer solves the problem of high price of GPS devices in the market. In general, the design structure is not only modular and easy to carry, the most important is the human nature, cost-effective, and has great practical value

    Thermal diffusivity degradation and point defect density in self-ion implanted tungsten

    Get PDF
    Using transient grating spectroscopy (TGS) we measure the thermal diffusivity of tungsten exposed to different levels of 20 MeV self-ion irradiation. Damage as low as 3.2 × 10−4 displacements per atom (dpa) causes a measurable reduction in thermal diffusivity. Doses of 0.1 dpa and above, up to 10 dpa, give a degradation of ̴55% from the pristine value at room temperature. Using a kinetic theory model, the density of irradiation-induced point defects is estimated based on the measured changes in thermal diffusivity as a function of dose. These predictions are compared with point defect and dislocation loop densities observed in transmission electron microscopy (TEM). Molecular dynamics (MD) predictions are combined with the TEM observations to estimate the density of point defects associated with defect clusters too small to be probed by TEM. When these “invisible” defects are accounted for, the total point defect density agrees well with that estimated from TGS for a range of doses spanning 3 orders of magnitude. Kinetic theory modelling is also used to estimate the thermal diffusivity degradation expected due to TEM-visible and invisible defects. Finely distributed invisible defects appear to play a much more important role in the thermal diffusivity reduction than larger TEM-visible dislocation loops. This work demonstrates the capability of TGS, in conjunction with kinetic theory models, to provide rapid, quantitative insight into defect densities and property evolution in irradiated materials.Peer reviewe

    Numerical analysis on magnetic leakage field of pipeline defect

    Get PDF
    Pipeline magnetic flux leakage inspection, mainly used for pipeline defect detection, is an important means of inner examination technology on pipeline. Flux leakage testing can't obtain valid defect identification signals by one hundred percent because of magnetization of the magnetic leakage field, the measured shape, size and location of pipeline defects, materials and operating conditions, and lift-off value, pole pitch and the length of steel brush during the measurement as well as forged pipe fittings such as welding seam, stiffener, flange and tee on the pipeline to be tested. This article reaches a conclusion that magnetic flux density distribution is influenced by the depth and width of defect through respectively researching magnetic leakage field of individual defect and double defects (thickness type) by finite-element method. It also conducts the numerical analysis on pipeline welding seam, stiffener, flange (increased wall thickness type) and tee (compound) leakage magnetic field in detection conditions of the same direction, and concludes their distribution rules of magnetic flux density. The characteristic parameters of distinguishing defect magnetic flux leakage field and the part of the pipeline magnetic flux leakage, derived from analysis and comparison of results on defective pipeline and conduit joint, stiffener, flange and tee magnetic flux leakage, provide a foundation of qualitative identification for accurately recognizing pipeline defect and eliminating the impact of other ancillary fittings on a pipe on pipeline magnetic flux leakage, and they can also offer infallible data to pipeline maintenance as a basis of quantitative analysis

    Orientation dependence of the nano-indentation behaviour of pure tungsten

    Full text link
    Coupling of nano-indentation and crystal plasticity finite element (CPFE) simulations is widely used to quantitatively probe the small-scale mechanical behaviour of materials. Earlier studies showed that CPFE can successfully reproduce the load-displacement curves and surface morphology for different crystal orientations. Here, we report the orientation dependence of residual lattice strain patterns and dislocation structures in tungsten. For orientations with one or more Burgers vectors close to parallel to the sample surface, dislocation movement and residual lattice strains are confined to long, narrow channels. CPFE is unable to reproduce this behaviour, and our analysis reveals the responsible underlying mechanisms

    Surface terraces in pure tungsten formed by high-temperature oxidation

    Full text link
    We observe large-scale surface terraces in tungsten oxidised at high temperature and in high vacuum. Their formation is highly dependent on crystal orientation, with only {111} grains showing prominent terraces. Terrace facets are aligned with {100} crystallographic planes, leading to an increase in total surface energy, making a diffusion-driven formation mechanism unlikely. Instead we hypothesize that preferential oxidation of {100} crystal planes controls terrace formation. Grain height profiles after oxidation and the morphology of samples heat treated with limited oxygen supply are consistent with this hypothesis. Our observations have important implications for the use of tungsten in extreme environments.Comment: 10 pages, 4 figures & supplementar

    Modified deformation behaviour of self-ion irradiated tungsten : A combined nano-indentation, HR-EBSD and crystal plasticity study

    Get PDF
    Predicting the dramatic changes in mechanical and physical properties caused by irradiation damage is key for the design of future nuclear fission and fusion reactors. Self-ion irradiation provides an attractive tool for mimicking the effects of neutron irradiation. However, the damaged layer of self-ion implanted samples is only a few microns thick, making it difficult to estimate macroscopic properties. Here we address this challenge using a combination of experimental and modelling techniques. We concentrate on self-ion-implanted tungsten, the frontrunner for fusion reactor armour components and a prototypical bcc material. To capture dose-dependent evolution of properties, we experimentally characterise samples with damage levels from 0.01 to 1 dpa. Spherical nano-indentation of grains shows hardness increasing up to a dose of 0.032 dpa, beyond which it saturates. Atomic force microscopy (AFM) measurements show pile-up increasing up to the same dose, beyond which large pile-up and slip-steps are seen. Based on these observations we develop a simple crystal plasticity finite element (CPFE) model for the irradiated material. It captures irradiation-induced hardening followed by strain-softening through the interaction of irradiation-induced-defects and gliding dislocations. The shear resistance of irradiation-induced-defects is physically-based, estimated from transmission electron microscopy (TEM) observations of similarly irradiated samples. Nano-indentation of pristine tungsten and implanted tungsten of doses 0.01, 0.1, 0.32 and 1 dpa is simulated. Only two model parameters are fitted to the experimental results of the 0.01 dpa sample and are kept unchanged for all other doses. The peak indentation load, indent surface profiles and damage saturation predicted by the CPFE model closely match our experimental observations. Predicted lattice distortions and dislocation distributions around indents agree well with corresponding measurements from high-resolution electron backscatter diffraction (HR-EBSD). Finally, the CPFE model is used to predict the macroscopic stress-strain response of similarly irradiated bulk tungsten material. This macroscopic information is the key input required for design of fusion armour components.Peer reviewe
    corecore